My Account
Science Math Combinatorics Combinatorial Game Theory
Combinatorial game theory is a branch of mathematics devoted to studying the optimal strategy in perfect-information games with two or more players (typical), one player (puzzles), or zero players (like Conway's Game of Life).
More information

Subcategories 1

Related categories 3

A comprehensive bibliography on combinatorial games; several papers about combinatorial games; and information about where to publish such results.
Many up-to-date links, and a short introduction.
How many ways are there of throwing n indistinguishable dice each with m faces?
Elwyn's research in the field, including several papers.
Research on pushing blocks, Clickomania, Phutball, and sliding coins. Survey paper on algorithmic combinatorial game theory.
Includes a complete list of all possible Fair Dice, most of which are not cubes. Includes pictures.
Description and analysis of several impartial and partial (partisan) combinatorial games by Lim Chu Wee.
A simple Java implementation of Conway's classic game of life.
Solution of the case of a restricted version called Oddish Phutball by presenting an explicit strategy in terms of a potential function. [PDF]
Mathematical paper by Erik Demaine, Martin Demaine and David Eppstein on solving the Philosopher's Football game. [PDF]
Research on pushing blocks, Clickomania, Phutball, and sliding coins. Survey paper on algorithmic combinatorial game theory.
Solution of the case of a restricted version called Oddish Phutball by presenting an explicit strategy in terms of a potential function. [PDF]
Mathematical paper by Erik Demaine, Martin Demaine and David Eppstein on solving the Philosopher's Football game. [PDF]
Includes a complete list of all possible Fair Dice, most of which are not cubes. Includes pictures.
A simple Java implementation of Conway's classic game of life.
Description and analysis of several impartial and partial (partisan) combinatorial games by Lim Chu Wee.
How many ways are there of throwing n indistinguishable dice each with m faces?
Elwyn's research in the field, including several papers.
A comprehensive bibliography on combinatorial games; several papers about combinatorial games; and information about where to publish such results.
Many up-to-date links, and a short introduction.
Last update:
March 11, 2019 at 5:55:03 UTC
Science
Shopping
Society
Sports
All Languages